Key Concepts in AI Safety: Specification in Machine Learning (Tim G. J. Rudner, Helen Toner, CSET)

This paper is the fourth installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. The first paper in the series, “Key Concepts in AI Safety: An Overview,” outlined three categories of AI safety issues—problems of robustness, assurance, and specification—and the subsequent two papers described problems of robustness and assurance, respectively. This paper introduces specification as a key element in designing modern machine learning systems that operate as intended.

Key Concepts in AI Safety: Specification in Machine Learning – Center for Security and Emerging Technology (georgetown.edu)

Marco Emanuele
Marco Emanuele è appassionato di cultura della complessità, cultura della tecnologia e relazioni internazionali. Approfondisce il pensiero di Hannah Arendt, Edgar Morin, Raimon Panikkar. Marco ha insegnato Evoluzione della Democrazia e Totalitarismi, è l’editor di The Global Eye e scrive per The Science of Where Magazine. Marco Emanuele is passionate about complexity culture, technology culture and international relations. He delves into the thought of Hannah Arendt, Edgar Morin, Raimon Panikkar. He has taught Evolution of Democracy and Totalitarianisms. Marco is editor of The Global Eye and writes for The Science of Where Magazine.

Latest articles

Related articles